

Objet Herbig-Haro

Jet polaire

Disque d'accrétion

2020

H

Objets de Herbig-Haro

JETS PROTOSTELLAIRES

Jet et flot [≠ collimation]

2^{ème} cœur

Evolution du champ magnétique lors de la contraction du nuage protostellaire

- Les lignes de champ s'incurvent et se rapprochent au fur et à mesure de l'effondrement du nuage;
- La rotation -très souvent présente - enroule les lignes autour de l'axe de rotation.

Copyright © 2005 Pearson Prentice Hall, Inc.

Journal, 670:1198Y1 0 Fields and **al**.; 1213, Ro The Astrophysical 2007 December 1 ions of Protostars:

7

Formation du jet bipolaire collimation par le champ électromagnétique

MECANISME DU JET « magnétohydrodynamique »

CONDITIONS	JET DE DISQUE PROTOSTELLAIRE
SOURCE D'ENERGIE	GRAVITE VIA LE MOMENT ANGULAIRE DU DISQUE
ORIGINE DE LA MATIERE EJECTEE	UNE FRACTION DE MATERIEL DU DISQUE 5 à 10%
MECANISME DE COLLIMATION	CHAMP MAGNETIQUE TOROIDAL

Conservation du moment angulaire

Si f_1 est la fréquence de rotation du nuage primitif et f_2 celle de la protoétoile on démontre que leur rapport est dans celui inverse du carré de leur rayon r_1 et r_2 . soit :

 $f_2 / f_1 = [r_1 / r_2]^2$ Si le nuage de départ de 0,1 pc se réduisait à la taille du soleil, le rayon changerait d'un facteur 4.10⁶ et la fréquence de rotation devrait augmenter d'un facteur d'environ 10¹³... Une telle hypothèse défie les lois physiques même si la rotation initiale du nuage de gaz est très faible (# 1,5 10⁻¹⁵ rad. sec⁻¹). Il faut donc que notre système évacue absolument de l'énergie.

L'étude comparée de la masse et du moment angulaire du système solaire montre que si le soleil représente toujours 98% de la masse il représente moins de 10% du moment angulaire. Où est donc passée cette énergie?...

La cavité magnétosphérique

La cavité magnétosphérique

Principales étapes de la formation stellaire

En bas sont indiquées les SED (Distributions Spectrales d'Energie) correspondantes aux objets observés. (André, 2002)

Classification des protoétoiles				
Classe	Pic d'émission	Durée (ans)	Description	
0	submillimétrique	104	Accrétion précoce	
I	IR-lointain	105	Phase d'accrétion principale	
II	proche-IR	106	Stade classique T-Tauri	
III	visible	107	Stade final T- Tauri	

Objet HH 24

Cette superbe image d'un jet très collimaté couvre une région d'environ une demiannée-lumière autour de l'objet Herbig-Haro 24.

Celui-ci se situe à quelques 400 pc (1300 a-l) de nous dans la pouponnière d'étoiles du complexe moléculaire Orion B.

SCENE 5: le trajet d'Hayashi

Durée approximative du processus	10 ⁷ ans
Température centrale:	De 3.10° à 6.10° K
Température de surface:	De 2.000 à 4.000 K
Densité centrale:	10 ²⁸ particules / m ³ 10 ²² particules / cm ³
Diamètre:	10 ⁷ km

Classement des populations stellaires

- Le schéma de gauche montre ce que serait le diagramme HR si la luminosité des étoiles était indépendante de leur température. Les points seraient répartis au hasard sans aucune information contributive.
- Par contre, le schéma de droite -proche d'un schéma réel- montre des concentrations de points représentatifs des étoiles. On y voit en premier la ligne en S couché, appelée Séquence Principale. 80 % des étoiles observées se trouvent là, parce que les étoiles y passent la plus grande partie de leur vie.

Diagramme de Hertzsprung -Russel ou comment classer la grande famille des

tamille des étoiles.

Définition de la Séquence Principale.

Copyright © 2005 Pearson Prentice Hall, Inc.

Entrée de notre protoétoile sur le diagramme d'H.-R.

Dès qu'elle est détectable dans le visible notre protoétoile entre sur le tableau en haut à droite : apanage des astres « froids et massifs »

ETAPE 4-5-6

Trajet isotherme

ETAPE 6-7

Trajet isoradiatif

22

Les étapes du trajet de Hayashi (1)

Tronçon 4/5

- Les réactions nucléaires ne sont toujours pas en vue. L'évolution ne peut se poursuivre que par contraction. Le cœur de l'étoile va se réduire doucement sans que la température effective n'augmente. Ainsi, la surface de l'étoile reste à température constante.
- Son point représentatif sur le diagramme HR décrit une verticale descendante. Trajet isotherme.

Les étapes du trajet (2) Tronçon 6/7

- La contraction continue, la température centrale augmente jusqu'à ce qu'elle atteigne en son centre les 10 MK nécessaires pour amorcer une fusion de l'hydrogène. Le bilan énergétique reste dominé par l'action gravitationnelle. La contraction se poursuit très lentement. L'énergie intrinsèque disponible peut bientôt contrecarrer les effets gravitationnels. L'équilibre hydrostatique est presqu'atteint.
- L'étoile se rapproche de la Séquence Principale du diagramme d'HR selon une ligne quasi horizontale. Trajet isoradiatif.

SCENE 6: Amorce des réactions nucléaires une étoile nouvelle est née

Durée approximative du processus	10 ⁶ ans
Température centrale: Réactions de fusion thermonucléaire amorcées	10.000.000 K
Température de surface:	4.500 K
Densité centrale:	10 ³¹ particules / m ³
	10 ²⁵ particules / cm ³

Allumage des fusions stellaires

• Fusion D : p + D \rightarrow ³He + γ

➢ Température critique : 8 x 10⁵ K

- Fusion Li : ⁷Li + p → ⁴He + ⁴He
 ≻Température critique : 2,5 x 10⁶ K
- H fusion: 4p → ⁴He + 4e⁺ + 4v_e + 2γ
 ≻Température critique : 10 x 10⁶ K

Les NBr, compte tenu de leur faible masse, ne peuvent amorcer que la 1^{ère} réaction nucléaire ci-dessus décrite...

Chaine proton-proton des étoiles de masse solaire

Ce processus physique, qu'Hans Bethe identifia en 1939, décrit les réactions qui permettent aux étoiles de générer leur énergie sur la SP.

E = ∆m.c² ≈ 26 MeV, c'est-àdire environ 6,6 MeV/nucléon.

Le schéma ci-contre analyse les principales étapes du processus P-P.

Une jeune étoile est née

S'extirpant du résidu de son nuage géniteur de gaz et de poussières...

32

Copyright © 2005 Pearson Prentice Hall, Inc.

Fin du trajet de Hayashi

ETAPE 7

A ce moment-là, toute l'énergie de l'étoile est d'origine thermonucléaire. Commence la Séquence Principale s.s.. On parle de Zero Age Main Sequence (ZAMS) pour déterminer cet instant dans la vie de l'étoile. Cela marque son acte officiel de naissance et le décompte de son âge.

Etoile séquence principale « clap de fin »

Durée approximative du processus	10 ¹⁰ ans
Température centrale:	15.000.000 K soit 15.10 ⁶ K
Température de surface:	6.000 K
Densité centrale:	10 ³² particules / m ³ 10 ²⁶ particules / cm ³
Diamètre:	$1,5 \times 10^{6} \text{ km}$

Equilibre hydrostatique Animation

Résumé des épisodes précédents

Chronologie préstellaire d'une étoile de M₀[~40 Ma]

	Stade	Durée ans	T° K centrale	T° K surface	Densité centrale	Ø en km	Objet
	1	2.106	10	10	109	1014	Nuage
Π	2	3.104	100	10	1012	1012	Fragment nuage
	3	105	10 000	100	1018	1010	Frag/protoétoile
	4	106	106	3 000	1024	10 ⁸	Protoétoile/jet
	5	107	5. 10 ⁶	4 000	10 ²⁸	107	Protoétoile/jet
	6	3.107	10. 106	4 500	10 ³¹	2.106	Etoile ss
	7	1010	15. 106	6 000	1032	1,5 106	Etoile sur SP
	En comparaison: \emptyset Soleil = 1,4.10 ⁶ km et \emptyset SS = 1,5.10 ¹⁰						

Simulation: Matthew Bate, University of Exeter; Visualisation: Richard West, UKAFF.

Modélisation de la formation stellaire

Données de départ: nuage de gaz et de poussières de 1,2 a-l de \emptyset et de 50 M_{Θ} . Durée réelle du phénomène ~50 Ma.

http://www.astro.ex.ac.uk/people/mbat e/index.html